

Heat Recovery Systems

For hot air and hot water applications

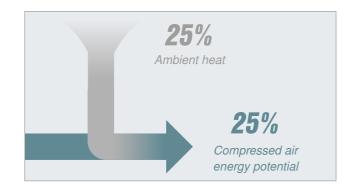
www.kaeser.com

Heat recovery systems

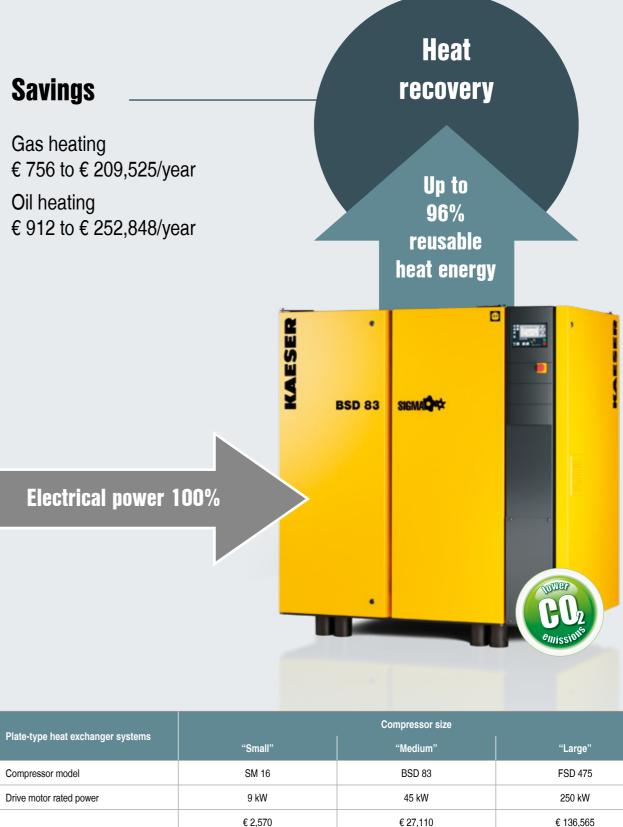
Why choose heat recovery?

In fact, the question should be: Why not? Amazingly, almost 100% of the electrical energy supplied to a rotary screw compressor is converted into heat energy.

Up to 96% of this energy can be recovered and reused for heating purposes. This not only reduces primary energy consumption, but also significantly improves a company's overall energy balance.

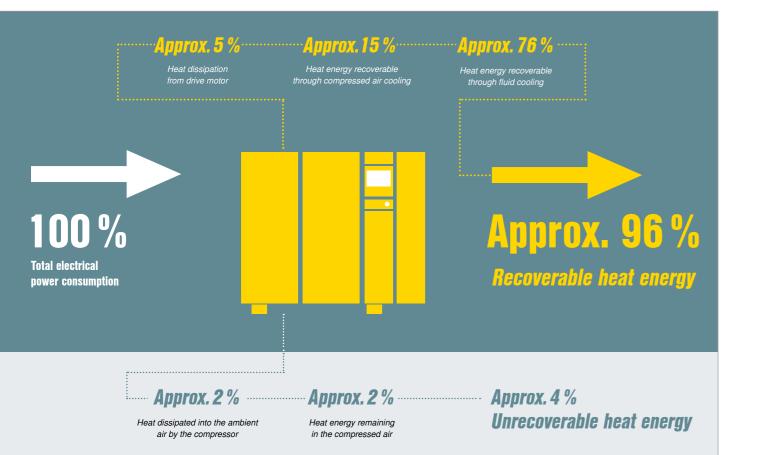

Compressor heat

Rotary screw compressors, boosters and blowers convert almost 100% of the electrical drive energy supplied to them into heat. The heat flow diagram (below) shows how this energy is distributed within the compressor system and how much of it is reusable.


Approximately 96% of the energy input can be recovered for reuse, whilst 2% remains in the compressed air and another 2% is dissipated into the ambient surroundings. But where does the usable energy in compressed air come from?

The answer is actually quite simple and perhaps surprising: during the compression process, the compressor converts electrical drive energy into heat energy. At the same time, it charges the intake air with energy potential. This corresponds to approximately 25% of the compressor's electrical power consumption. However, this energy only becomes

usable when the compressed air expands again at its point of consumption and, in doing so, absorbs heat energy from the ambient surroundings. Of course, the amount of energy available for reuse depends on the pressure and leakage losses within the compressed air system.

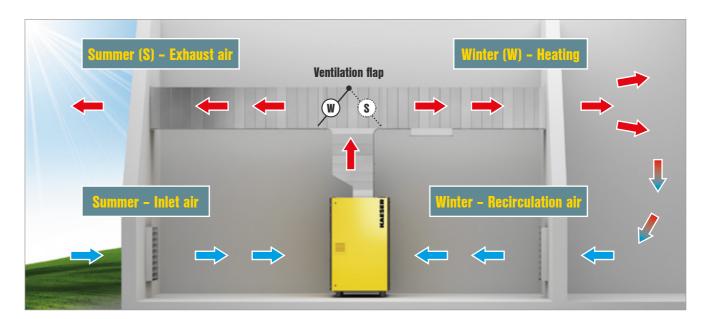


Save money whilst conserving the environment

4,671 kg CO₂

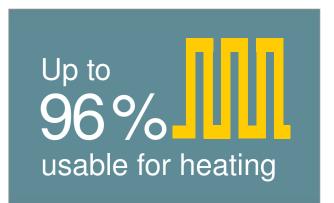
Potential savings per year: Fuel oil

Compressor size	
"Medium"	"Large"
BSD 83	FSD 475
45 kW	250 kW
€ 27,110	€ 136,565
49,285 kg CO ₂	248,274 kg CO ₂

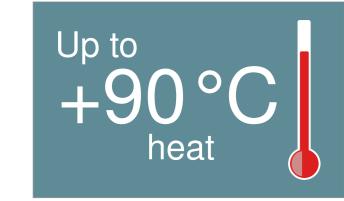

Heat recovery systems - Hot air

Minimise primary energy consumption for heating

As self-contained complete systems, modern rotary screw compressors, boosters and blowers are especially well suited to heat recovery systems.


In particular, direct use of the recoverable heat via an exhaust air ducting system enables up to 96% of the total energy input to be recovered and reused.

This is the case regardless of whether a fluid-injecting or a dry compression rotary screw compressor, a booster or a blower is involved.



Heating with hot air

By using heated cooling air from the compressor, neighbouring spaces can be heated simply and effectively via exhaust air ducting. In this way, up to 96% of the electrical power supplied to a compressor can be reused – either for the purposes of space heating or for use as process heat. When using recovered compressor exhaust heat for space-heating purposes, exhaust air ducting simply feeds the heated cooling air to wherever it is needed, thereby allowing such spaces as storage areas or workshops to be heated free of charge. A ventilation flap allows the heated cooling air to be conveyed outside during summer operation (S) or to the areas that require heating during winter operation (W).

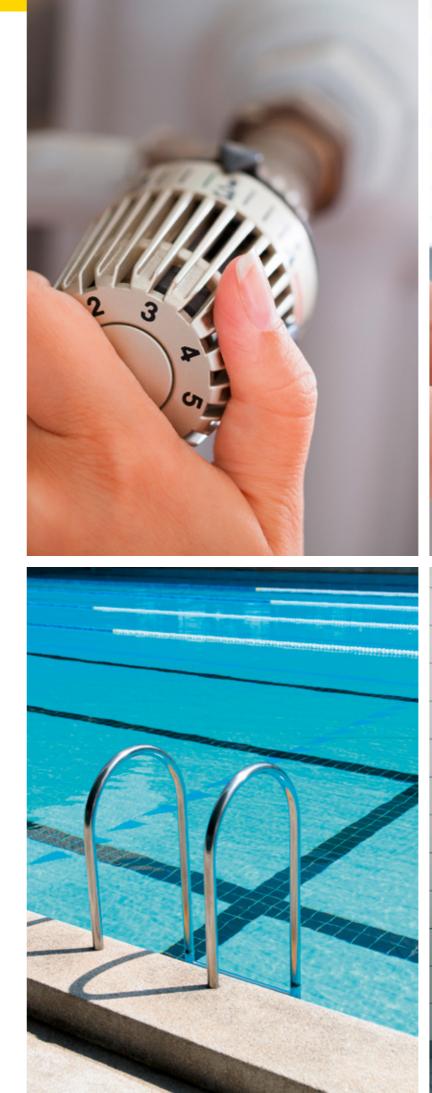
Minimise primary energy consumption for process, service and hot water heating

By reusing the exhaust heat from the compressor, heat exchanger systems can provide heating and service water on demand at temperatures up to +70°C, or even +85°C if required.

For standard applications using heat recovery systems for the production of hot water and service water, PTG platetype heat exchangers are used.

Special, fail-safe heat exchangers are used in the case of operations without an interconnected water circuit, or for applications with the highest demands of purity for the heated water, such as with cleaning water in the food industry.

Hot water with temperatures up to +70°C can easily be produced using a heat exchanger system, with even higher temperatures available upon request.


Feed heat into your heating systems

Up to 76% of the electrical power originally supplied to a compressor can be recovered for use in hot-water heating systems and service water installations. This significantly reduces the amount of primary energy required for heating purposes.

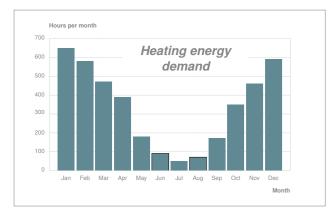
PTG plate-type heat exchanger

High-quality, stainless steel plate-type heat exchangers are the first choice when it comes to using heat recovered from rotary screw compressors for heating process and service water, or for generating process heat.

Equipment for rotary screw compressors

Hot air heat recovery

All KAESER rotary screw compressors can be connected to user-provided exhaust air ducting, allowing the heated cooling air to be used for the purposes of space heating. Possible applications include drying processes, heating of halls and buildings, air curtain systems and the preheating of burner air.


PTG plate-type heat exchanger system

Rotary screw compressors from the SM series (from 5.5 kW) and upwards can be equipped with PTG systems. Depending on the size of the system, the PTG heat exchanger can either be integrated into the compressor or installed externally. Possible areas of application: Supplying heat for central heating systems, laundry facilities, electroplating, general process heat.

With special, fail-safe heat exchangers: Cleaning water in the food industry, swimming pool heating, hot water for shower and washroom facilities.

Shell and tube heat exchanger

For cases where the cooling water quality is inadequate (e.g. hard, contaminated cooling water or seawater with high salt content), special shell and tube heat exchangers are optionally available. Our compressed air specialists can advise you regarding the right design for your particular application.

Heating – not just needed in winter

It goes without saying that heating is necessary during the winter months. However, it is also required to a greater or lesser extent throughout the year, e.g. for supplying hot water. This means that the energy demand for heating is actually approximately 4000 hours per year.

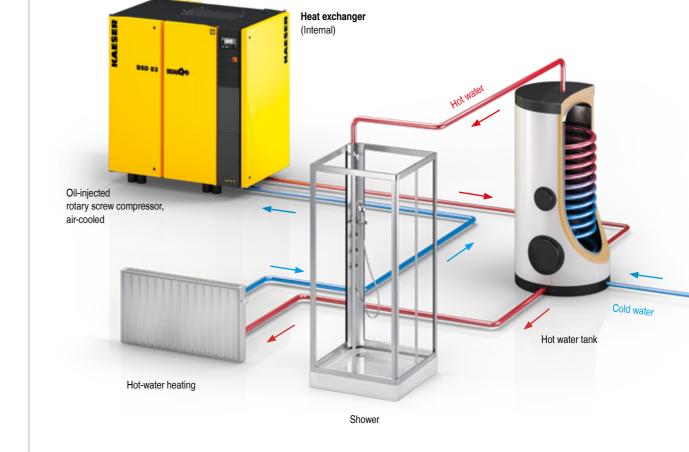


Image: Heat recovery process. Potable water applications only possible in conjunction with special, safety heat exchanger

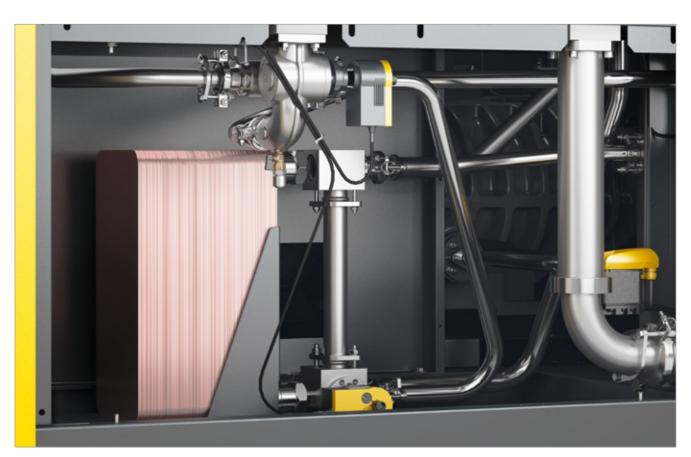


Image: Internal layout of a compressor - system comprising plate-type heat exchanger, thermostatic valve and complete piping

Technical specifications for...

Hot air

Туре	At max.	Rated motor		n available	Usable	Cooling air	Poter	ntial fuel oil	savings	Potenti	al natural ga	is sav	ings
	gauge pressure	power	heat	output	hot air volume	heated by	Fuel oil	CO ₂	Heating cost savings	Natural gas	CO ₂		ating cost avings
	bar	kW	kW	MJ/h "	m³/h	K (approx.)	L	kg	€/year	m ³	kg		€/year
SX 3 SX 4 SX 6 SX 8	8	2.2 3 4 5.5	2.7 3.4 4.4 6.0	10 12 16 22	1000 1000 1000 1300	8 10 13 14	608 766 992 1352	1658 2089 2705 3687	912 1149 1488 2028	504 635 822 1120	1008 1270 1644 2240	0 hrs/yr	756 953 1233 1680
SM 10 SM 13 SM 16	8	5.5 7.5 9	6.8 9.1 11.1	25 33 40	2100	10 13 16	1532 2051 2501	4178 5593 6820	1488 2028 0007 Jone 1488 2028 2298 3077 3077 3752 4463 5577 4463 5577 6221	1270 1699 2073	2540 3398 4146	Savings potential for 2000 hrs/yr	1905 2549 3110
SK 22 SK 25	8	11 15	13.2 16.5	48 59	2500 3000	16 17	2975 3718	8113 10,139	4463 5577	2465 3081	4930 6162	ngs poten	3698 4622
ASK 28 ASK 34 ASK 40	8	15 18.5 22	18.4 22.8 26.8	66 82 96	4000 4000 5000	14 17 16	4147 5138 6040	11,309 14,011 16,471	6221 7707 9060	3436 4258 5005	6872 8516 10,010	Savi	5154 6387 7508
ASD 35 ASD 40 ASD 50 ASD 60	8.5	18.5 22 25 30	19.9 23.5 28.0 34.6	72 85 101 125	3800 3800 4500 5400	16 19 19 19	8969 10,592 12,620 15,595	24,458 28,884 34,415 42,528	13,454 15,888 18,930 23,393	7432 8777 10,458 12,923	14,864 17,554 20,916 25,846		11,148 13,166 15,687 19,385
BSD 65 BSD 75 BSD 83	8.5	30 37 45	35.2 43.4 52.0	127 156 187	6500 8000 8000	16 16 20	15,865 19,561 23,437	43,264 53,343 63,913	23,798 29,342 35,156	13,147 16,209 19,421	26,294 32,418 38,842		19,72 24,31 29,13
CSD 90 CSD 110 CSD 130	8.5	45 55 75	51 61 74	184 220 266	8000 9500 11,000	19 19 20	22,986 27,493 33,352	62,683 74,973 90,951	34,479 41,240 ► ^{50,028}	19,048 22,782 27,638	38,096 45,564 55,276	/yr	28,57 34,17 41,45
CSDX 145 CSDX 175	8.5	75 90	84 101	302 364	11,000 13,000	23 23	37,860 45,522	103,244 124,138	su 56,790 68,283	31,373 37,722	62,746 75,444	4000 hrs/yr	47,06 56,58
DSD 145 DSD 175 DSD 205 DSD 240	9 8.5 8.5 8.5	75 90 110 132	82 96 120 145	295 346 432 522	11,000 13,000 17,000 20,000	22 22 21 22	36,958 43,268 54,085 65,353	100,784 117,992 147,490 178,218	L/S = 50,028 56,790 68,283 0000 68,283 0000 68,283 55,437 64,902 81,128 98,030 98,030 96,677 117,635	30,626 35,854 44,818 54,155	61,252 71,708 89,636 108,310	Savings potential for	45,939 53,78 67,22 81,23
DSDX 245 DSDX 305	8.5	132 160	143 174	515 626	21,000	20 25	64,451 78,423	175,758 213,860	96,677 96,677 117,635	53,408 64,986	106,816 129,972	Saving	80,112 97,479
ESD 375 ESD 445	8.5	200 250	221 254	796 914	30,000 34,000	22 22	99,607 114,480	271,628 312,187	149,411 171,720	82,540 94,865	165,080 189,730		123,810 142,298
FSD 475 FSD 575	8.5	250 315	274 333	986 1199	40,000	21 25	123,494 150,086	336,768 409,285	185,241 225,129	102,334 124,370	204,668 248,740		153,50 186,55
HSD 662 HSD 722 HSD 782 HSD 842	8.5	360 400 450 500	21 24 25 28	76 86 90 101	10,000	6 7 7 8	9465 10,817 11,268 12,620	25,811 29,498 30,728 34,415	14,198 16,226 16,902 18,930	7843 8964 9337 10,458	15,686 17,928 18,674 20,916		11,765 13,446 14,006 15,687

') 1 MJ/h = 1 kW x 3.6

Savings calculation example for ASD 50

For fuel oil		For natural gas	
Maximum available heat output:	28.0 kW	Maximum available heat output:	28.0 kW
Calorific value per litre of fuel oil:	9861 kWh/l	Calorific value per m ³ of natural gas:	10.2 kWh/m ³
Fuel oil heating efficiency:	90%	Natural gas heating efficiency:	105 %
Price per litre of fuel oil:	€ 1.50/I	Price per m ³ of natural gas:	€ 1.50/m ³
Cost savings:	28.0 kW x 4000 hrs/yr 0.90 x 9861 kWh/l x € 1.50/l = € 18,930 per year	Cost savings:	28.0 kW x 4000 hrs/yr 1.05 x 10.2 kWh/m³ x € 1250 /m³ = € 15,686 per year

Note: The potential energy savings indicated are based on compressors at operating temperature and max. gauge pressure (8.0 / 8.5 / 9.0 bar). At other pressures, values may vary.

...rotary screw compressors

Hot water

Туре	At max.			n available output		er volume	PTG system location	Pote	ntial fuel oil	saviı	ngs	Potenti	al natural g	as sa	vings
	gauge pressure	power	neal	υιμι	(heating to 70°C)		IOCALION	Fuel oil	CO ₂		ating cost savings	Natural gas			ating cost avings
	bar	kW	kW	MJ/h [•])	(ΔT 25 K) m³/h	(ΔT 55 K) m³/h	Int./ext.	I.	kg		€/year	m³	kg		€/year
SM 10 SM 13 SM 16	8	5.5 7.5 9	4.5 6.2 7.6	16 22 27	0.16 0.21 0.29	0.07 0.10 0.13	External	1014 1397 1713	2765 3810 4671	2000 hrs/yr	1521 2096 2570	840 1158 1419	1680 2316 2838	Savings potential for 2000 hrs/yr	126 173 212
SK 22 SK 25	8	11 15	9.4 12.0	34 43	0.32 0.41	0.15 0.19	External	2118 2704	5776 7374	tential for	3177 4056	1755 2241	3510 4482	tential for	263 336
ASK 28 ASK 34 ASK 40	8	15 18.5 22	13.6 16.9 19.8	49 61 71	0.47 0.58 0.68	0.21 0.26 0.31	Internal	3065 3808 4462	8358 10,384 12,168	Savings potential for	4598 5712 6693	2540 3156 3697	5080 6312 7394	Savings pot	381) 473 554
ASD 35 ASD 40 ASD 50 ASD 60	8.5	18.5 22 25 30	15.2 18.1 21.6 26.6	55 65 78 96	0.52 0.62 0.74 0.92	0.24 0.28 0.34 0.42	Internal	6851 8158 9735 11,989	18,683 22,247 26,547 32,694		10,277 12,237 14,603 17,984	5677 6760 8067 9935	11,354 13,520 16,134 19,870		8510 10,140 12,10 14,903
BSD 65 BSD 75 BSD 83	8.5	30 37 45	27.1 33.5 40.1	98 121 144	0.93 1.15 1.38	0.42 0.52 0.63	Internal	12,214 15,099 18,073	33,308 41,175 49,285		18,321 22,649 27,110	10,121 12,512 14,977	20,242 25,024 29,954		15,182 18,768 22,466
CSD 90 CSD 110 CSD 130	8.5	45 55 75	39.9 48.8 57.8	144 172 211	1.37 1.65 1.99	0.62 0.75 0.91	Internal	17,983 21,544 26,051	49,040 58,750 71,041	2	26,975 32,316 39,077	14,902 17,852 21,587	29,804 35,704 43,174	-	22,35 26,77 32,38
CSDX 145 CSDX 175	8.5	75 90	66 79	238 284	2.30 2.70	1.03 1.24	Internal	29,747 36,606	81,120 97,098	4000 hrs/yr	44,621 53,409	24,650 29,505	49,300 59,010	4000 hrs/y	36,97 44,25
DSD 145 DSD 175 DSD 205 DSD 240	9 8.5 8.5 8.5	75 90 110 132	61 71 88 107	220 256 317 385	2.10 2.40 3.00 3.70	0.96 1.11 1.38 1.68	Internal	27,493 32,000 39,662 48,226	74,973 87,264 108,158 131,512	potential for	41,240 48,000 59,493 72,339	22,782 26,517 32,866 39,963	45,564 53,034 65,732 79,926	Savings potential for 4000 hrs/yr	34,173 39,770 49,299 59,94
DSDX 245 DSDX 305	8.5	132 160	105 129	378 464	3.60 4.40	1.64 2.04	Internal	47,324 58,142	129,053 158,553	Savings	70,986 87,213	39,216 48,179	78,432 96,358	Saving	58,82 72,26
ESD 375 ESD 445	8.5	200 250	162 187	583 673	5.60 6.40	2.54 2.93	Internal	73,015 84,283	199,112 229,840		109,523 126,425	60,504 69,841	121,008 139,682		90,75 104,76
FSD 475 FSD 575	8.5	250 315	202 246	727 886	7.00 8.50	3.16 3.85	Internal	91,043 110,874	248,274 302,353		136,565 166,311	75,444 91,877	150,888 183,754		113,16 137,81
HSD 662 HSD 722 HSD 782 HSD 842	8.5	360 400 450 500	291 323 348 374	1048 1163 1253 1346	10.00 11.10 12.00 12.90	4.56 5.06 5.45 5.86	Internal	131,156 145,579 156,847 168,565	357,662 396,994 427,722 459,677	-	196,734 218,369 235,271 252,848	108,683 120,635 129,972 139,683	217,366 241,270 259,944 279,366		163,02 180,95 194,95 209,52

⁹ 1 MJ/h = 1 kW x 3.6

Savings calculation example for ASD 50

For fuel oil				For natural gas	
Maximum available heat output:	21.6 kW			Maximum available heat output:	21.6 kW
Calorific value per litre of fuel oil:	9861 kWh/l			Calorific value per m ³ of natural gas:	10.2 kWh/m ³
Fuel oil heating efficiency:	90%			Natural gas heating efficiency:	105 %
Price per litre of fuel oil:	€ 1.50/I			Price per m ³ of natural gas:	€ 1.50/m ³
Cost savings:	21.6 kW x 4000 hrs/yr	x € 1.50/l	= € 14,603 per vear	Cost savings:	21.6 kW x 4000 hrs/yr x € 1.50 /m ³ = € 12.101 per vear
CUSI Savings.	0.9 x 9861 kWh/l	X€ 1.00/I	= € 14,003 per year	Cost savings.	1.05 x 10.2 kWh/m ³

Note: The potential energy savings indicated are based on compressors at operating temperature and max. gauge pressure (8.0 / 8.5 / 9.0 bar). At other pressures, values may vary.

Heat recovery systems for...

...blowers

Hot air

The Air-Cooled Aftercooler (ACA) is an air/air heat exchanger. Process air is cooled in a cross-flow process, whereby ambient air is heated via a thermal energy exchange. In terms of a medium supply, only an electrical connection for the fan is needed. At an ambient temperature of +20°C, for example, the process air flowing into the cooler can be cooled down from +150°C to +30°C. The ACA offers particular advantages when it comes to the pneumatic conveying of temperature-sensitive bulk materials. Furthermore, should a production hall need to be heated during the winter, the ACA can do that as well. The exhaust air flow from the cooler contains up to 75% of the electrical power in the form of blower heat. To maximise the energy gain and ensure optimum cooling efficiency, the maximum pressure loss is no more than 35 mbar. An integrated thermostat monitors operation of the unit by detecting the process air discharge temperature and activates a floating contact by means of an adjustable trigger point.

Application examples

Cooling of process air from blowers,
e.g. for bulk materials conveying
Space heating for production halls

Hot water

The water-cooled WRN aftercooler is a shell and tube heat exchanger. With this system, the process air passes through multiple cooling pipes, around which water flows. The water serves as both a cooling and a heat-transfer medium. This type of heat exchanger is individually customised for each project, in order to ensure that the drop in process air temperature and the increase in water temperature match the operator's requirements precisely. To minimise pressure loss resulting from the additional power consumption of the blower and achieve maximum heat transfer, a variety of cooling pipe geometries are used. Furthermore, several different materials can be used for the cooling pipes, depending on the quality of the water supply. The cooler shrouding is enamel coated. The maximum achievable water temperature for the return flow is approx. 5K below the process air inlet temperature inside the heat exchanger.

Application examples

- Integration into heating circuits to raise return air temperature
- Integration into heat pump circuits
- Floor heating
- Sludge drying

Technical specifications: Heat recovery systems...

Hot air

Model	Max. process air flow rate	Max. pressure loss	Max. fan flow rate "	Fan power supply (400V)	Fan power ⁹	Total weight	Dimensions W x D x H	Connection nominal width
	m³/min at STP	mbar	m³/h	А	w	kg	mm	DN
ACA 53	5	15	1700	0.24	110	58	980 x 650 x 610	50
ACA 88	7	25	1700	0.24	110	58	980 x 650 x 610	65
ACA 130	12	25	3100	0.43	210	97	980 x 650 x 610	80
ACA 165	14	30	3100	0.43	210	97	980 x 650 x 610	100
ACA 235	22	30	6200	0.43 (2x)	210	193	1900 x 850 x 1200	100
ACA 350	30	35	6200	0.43 (2x)	210	199	1900 x 850 x 1280	150

^{*)} At max. thrust

...for blowers

Hot water

Model	Connection nominal width	Max. flow rate, blower air	Max. flow rate, hot water	Connection	dimensions	Dime	Weight	
	DN	m³/min at STP	m³/h	Air	Water	Ø Shrouding	Length ")	kg
WRN 50 smooth	125	15	1	DN 125, PN 16	1 ¼	168	1410	71
WRN 90 smooth	200	30	1.5	DN 200, PN 16	1 ¼	245	1430	145
WRN 130 smooth	250	42	2	DN 250, PN 10	1 ½	273	1441	225
WRN 170 smooth	300	57	2.5	DN 300, PN 10	2	324	1441	280
WRN 250 smooth	350	75	3	DN 350, PN 10	DN 65, PN 16	375	1641	400
WRN 350 smooth	450	108	3.5	DN 450, PN 10	DN 80, PN 16	450	1649	590
WRN 450 smooth	500	145	4.5	DN 500, PN 10	DN 100, PN 16	519	1655	690

*) With welded counterflange (included in scope of delivery)

Savings calculation example for ACA 350 (production hall heating)

Blower (37 kW)	
Flow rate:	30 m³/min
Pressure differential:	600 mbar
Inlet temperature:	0° C
Discharge temperature:	+52°C

	Heat output:	25 kW
	Air heating capacity:	2200 m³/h from 0 to +35°C
	Process air pressure loss:	35 mbar = 2.2 kW

* Calculation as per rotary screw compressors for fuel oil heating

Savings calculation example for WRN 170 (supplementary heating)

Blower (37 kW)		WRN 170				
Flow rate:	30 m³/min	Heat output:	14 kW			
Pressure differential:	600 mbar	Hot water generation:	600 l/h water from +25°C to +45°C			
Inlet temperature:	0 ° 0	Process air pressure loss:	20 mbar = 2 kW (approx. 1.2 kW more at blower)			
Discharge temperature:	+52°C					

Cost savings approx. € 9,460 per year'

* Calculation as per rotary screw compressors for fuel oil heating

More compressed air for less energy The world is our home

As one of the world's largest manufacturers of compressors, blowers and compressed air systems, KAESER KOMPRESSOREN is represented throughout the world by a comprehensive network of wholly owned subsidiaries and authorised distribution partners in over 140 countries.

By offering innovative, efficient and reliable products and services, KAESER KOMPRESSOREN's experienced consultants and engineers work in close partnership with customers to enhance their competitive edge and to develop progressive system concepts that continuously push the boundaries of performance and technology. Moreover, decades of knowledge and expertise from this industry-leading systems provider are made available to each and every customer via the KAESER group's advanced global IT network.

These advantages, coupled with KAESER's worldwide service organisation, ensure that every product operates at the peak of its performance at all times, providing optimal efficiency and maximum availability.

KAESER COMPRESSORS Australia Pty. Ltd.

Locked Bag 1406 – Dandenong South – Vic. 3164 45 Zenith Road – Dandenong – Vic. 3175 Phone: +61 39791 5999 – Fax: +61 39791 5733 www.kaeser.com – E-mail: info.australia@kaeser.com